Valorización del desperdicio alimentrio del procesado del tomate (SOLANUM LYCOPERSICUM)


Resumen

Resumen. El consumo de Solalum Lycopersicum se ha visto aumentado en los últimos años y con ello su producción y los desperdicios generados a raíz del cultivo y procesado. Por ello, el presente trabajo pretende valorar y conocer si existen diferencias significativas entre los distintos métodos de valorización de los subproductos del tomate. La revisión bibliográfica a través de la cual se seleccionaron 52 artículos publicados casi al completo en los últimos cinco años; doce para la extracción de carotenoides, diez para la extracción de compuestos fenólicos, cuatro para la pectina y siete para la formación de biogás. La valorización alimentaria del tomate es amplia y poco estudiada aún. La extracción de compuestos fenólicos, pectina o licopeno suponen un gran abanico de nuevas posibilidades. Métodos de pretratamiento emergentes como las altas presiones, los pulsos eléctricos o el CO2 supercrítico abren la posibilidad de mejorar la extracción de compuestos bioactivos y conseguir una economía circular. Se concluye que son necesarios más estudios para confirmar e indagar sobre la efectividad y rentabilidad de los métodos emergentes, siendo estos, de manera general, los más eficaces para la extracción de los compuestos meta.


Palabras clave: Valorización del tomate. revisión bibliográfica, compuestos bioactivos, desperdicio alimentario, industria alimentaria.


##plugins.themes.bootstrap3.article.details##

Cómo citar

Anaya Perez, C. (2024). Valorización del desperdicio alimentrio del procesado del tomate (SOLANUM LYCOPERSICUM). MLS Health and Nutrition Research, 3(1). https://doi.org/10.60134/2316


Descargas

La descarga de datos todavía no está disponible.

Estadísticas


Citas

1. FAO, editor. Moving forward on food loss and waste reduction. Rome: Food and Agriculture Organization of the United Nations; 2019. 156 p. (The state of food and agriculture).

2. Leong YK, Chang JS. Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresour Technol. September 1, 2022;359:127459.

3. Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E. Valorization of Tomato Waste as a Source of Carotenoids. Mol Basel Switz. aug 20, 2021;26(16):5062.

4. Eslami E, Carpentieri S, Pataro G, Ferrari G. A Comprehensive Overview of Tomato Processing By-Product Valorization by Conventional Methods versus Emerging Technologies. Foods Basel Switz. dec 29, 2022;12(1):166.

5. Cámara Hurtado M. Productos, extractos y subproductos del tomate como nuevos ingredientes alimentarios [Internet]. [cited Mar 7, 2023]. Retrieved from: https://www.ucm.es/otri/complutransfer-productos-extractos-y-subproductos-del-tomate-como-nuevos-ingredientes-alimentarios

6. Ministerio para la Transición Ecológica y el Reto Demográfico (MITECO). España Circular 2030 [Internet]. Catálogo de Publicaciones de la Administración General del Estado; 2023. Retrieved from: https://www.miteco.gob.es/es/calidad-y-evaluacion-ambiental/temas/economia-circular/espanacircular2030_def1_tcm30-509532_mod_tcm30-509532.pdf

7. Tabrika I, Mayad EH, Furze JN, Zaafrani M, Azim K. Optimization of tomato waste composting with integration of organic feedstock. Environ Sci Pollut Res Int. Dec. 2021;28(45):64140-9.

8. Coelho M, Pereira R, Rodrigues AS, Teixeira JA, Pintado ME. Extraction of tomato by-products' bioactive compounds using ohmic technology. Food Bioprod Process. September 1, 2019;117:329-39.

9. Esparza I, Jiménez-Moreno N, Bimbela F, Ancín-Azpilicueta C, Gandía LM. Fruit and vegetable waste management: Conventional and emerging approaches. J Environ Manage. July 1, 2020;265:110510.

10. Coelho MC, Rodrigues AS, Teixeira JA, Pintado ME. Integral valorisation of tomato by-products towards bioactive compounds recovery: Human health benefits. Food Chem. June 1, 2023;410:135319.

11. Popescu M, Iancu P, Plesu V, Todasca MC, Isopencu GO, Bildea CS. Valuable Natural Antioxidant Products Recovered from Tomatoes by Green Extraction. Mol Basel Switz. June 29, 2022;27(13):4191.

12. Almeida PV, Rodrigues RP, Gaspar MC, Braga MEM, Quina MJ. Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. J Environ Manage. dec. 1, 2021;299:113505.

13. Liadakis G, Katsouli M, Chanioti S, Giannou V, Tzia C. Identification, quantification, and characterization of tomato processing by-products. In: Jeguirim M, Zorpas A, editors. Tomato Processing by-Products [Internet]. Academic Press; 2022 [cited 2023 March 30]. p. 1-32. Available from: https://www.sciencedirect.com/science/article/pii/B9780128228661000041

14. Cabo Domínguez CM, Rodríguez Moratinos AB, Garrido Álvarez M. Valorización de subproductos de la agroindustria para una economía verde y circular. Universidad de Extremadura [Internet]. 2020; Retrieved from: https://dehesa.unex.es/bitstream/10662/11732/1/978-84-09-26056-0.pdf

15. Gurri A, Aguiló-Aguayo I, Abadias M, Echeverria G, Bobo G, Vilanova L, et al. Valorización de los desperdicios de la producción y procesado de tomate, aceituna, patata y cereales. Interempresas [Internet]. April 14, 2021 [cited February 25, 2023]; Retrieved from: https://www.interempresas.net/Horticola/Articulos/315961-Valorizacion-desperdicios-produccion-procesado-tomate-aceituna-patata-cereales.html

16. Saba B, Bharathidasan AK, Ezeji TC, Cornish K. Characterization and potential valorization of industrial food processing wastes. Sci Total Environ. April 10, 2023;868:161550.

17. Rodríguez-Valdés A, Florido-Bacallao M, Dueñas-Hurtado F, Muñoz-Calvo LJ, Hanson P, Álvarez-Gil M. MORFOAGRONOMIC CHARACTERIZATION IN TOMATO (Solanum lycopersicum L.) LINES WITH RESISTANCE TO BEGOMOVIRUS. Cultiv Trop. 2017;38(2):70-9.

18. Laranjeira T, Costa A, Faria-Silva C, Ribeiro D, de Oliveira JMPF, Simões S, et al. Sustainable Valorization of Tomato By-Products to Obtain Bioactive Compounds: Their Potential in Inflammation and Cancer Management. Mol Basel Switz. mar 4, 2022;27(5):1701.

19. Ibrahim M, Labaki M. Extraction and formulation of valuable components from tomato processing by-products. In: Jeguirim M, Zorpas A, editors. Tomato Processing by-Products [Internet]. Academic Press; 2022 [cited March 30, 2023]. p. 77-116. Available at: https://www.sciencedirect.com/science/article/pii/B9780128228661000090

20. Szabo K, Cătoi AF, Vodnar DC. Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients. Plant Foods Hum Nutr Dordr Neth. Dec 2018;73(4):268-77.

21. Górecka D, Wawrzyniak A, Jędrusek-Golińska A, Dziedzic K, Hamułka J, Kowalczewski PŁ, et al. Lycopene in tomatoes and tomato products. Open Chem. 2020;18(1):752.

22. Pirozzi A, Ferrari G, Donsì F. Cellulose Isolation from Tomato Pomace Pretreated by High-Pressure Homogenization. Foods Basel Switz. jan 19, 2022;11(3):266.

23. Awasthi MK, Harirchi S, Sar T, Vs V, Rajendran K, Gomez-Garcia R, et al. Myco-biorefinery approaches for food waste valorization: Present status and future prospects. Bioresour Technol. September 1, 2022;360:127592.

24. Soto MDS, Zorpas AA, Pedreño JN, Lucas IG. Vermicomposting of tomato wastes. In: Jeguirim M, Zorpas A, editors. Tomato Processing by-Products [Internet]. Academic Press; 2022 [cited March 30, 2023]. p. 201-30. Available at: https://www.sciencedirect.com/science/article/pii/B9780128228661000107

25. Nagarajan J, Pui Kay H, Krishnamurthy NP, Ramakrishnan NR, Aldawoud TMS, Galanakis CM, et al. Extraction of Carotenoids from Tomato Pomace via Water-Induced Hydrocolloidal Complexation. Biomolecules. july 9, 2020;10(7):1019.

26. Pataro G, Carullo D, Falcone M, Ferrari G. Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov Food Sci Emerg Technol. July 1, 2020;63:102369.

27. Andreou V, Dimopoulos G, Dermesonlouoglou E, Taoukis P. Application of pulsed electric fields to improve product yield and waste valorization in industrial tomato processing. J Food Eng. April 1, 2020;270:109778.

28. Lazzarini C, Casadei E, Valli E, Tura M, Ragni L, Bendini A, et al. Sustainable Drying and Green Deep Eutectic Extraction of Carotenoids from Tomato Pomace. Foods Basel Switz. jan 30, 2022;11(3):405.

29. Szabo K, Diaconeasa Z, Cătoi AF, Vodnar DC. Screening of Ten Tomato Varieties Processing Waste for Bioactive Components and Their Related Antioxidant and Antimicrobial Activities. Antioxidants. Aug 2019;8(8):292.

30. Pataro G, Carullo D, Bakar Siddique MA, Falcone M, Donsì F, Ferrari G. Improved extractability of carotenoids from tomato peels as side benefits of PEF treatment of tomato fruit for more energy-efficient steam-assisted peeling. J Food Eng. September 1, 2018;233:65-73.

31. Jurić S, Ferrari G, Velikov KP, Donsì F. High-pressure homogenization treatment to recover bioactive compounds from tomato peels. J Food Eng. Dec 1, 2019;262:170-80.

32. Nunes Chada PS, Santos PH, Rodrigues LGG, Goulart GAS, Azevedo dos Santos JD, Maraschin M, et al. Non-conventional techniques for the extraction of antioxidant compounds and lycopene from industrial tomato pomace (Solanum lycopersicum L.) using spouted bed drying as a pre-treatment. Food Chem X. mar 30, 2022;13:100237.

33. Petrotos K, Gerasopoulos K. Sustainable use of tomato pomace for the production of high added value food, feed, and nutraceutical products. In: Iulianelli A, Cassano A, Conidi C, Petrotos K, editors. Membrane Engineering in the Circular Economy [Internet]. Elsevier; 2022 [cited Feb. 6, 2023]. p. 315-42. Available at: https://www.sciencedirect.com/science/article/pii/B9780323852531000149

34. Ninčević Grassino A, Djaković S, Bosiljkov T, Halambek J, Zorić Z, Dragović-Uzelac V, et al. Valorisation of Tomato Peel Waste as a Sustainable Source for Pectin, Polyphenols and Fatty Acids Recovery Using Sequential Extraction. Waste Biomass Valorization. September 1, 2020;11(9):4593-611.

35. Madia VN, De Vita D, Ialongo D, Tudino V, De Leo A, Scipione L, et al. Recent Advances in Recovery of Lycopene from Tomato Waste: A Potent Antioxidant with Endless Benefits. Mol Basel Switz. July 26, 2021;26(15):4495.
36. Sengar AS, Rawson A, Muthiah M, Kalakandan SK. Comparison of different ultrasound assisted extraction techniques for pectin from tomato processing waste. Ultrason Sonochem. march 1, 2020;61:104812.

37. Bao Y, Reddivari L, Huang JY. Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innov Food Sci Emerg Technol. oct 1, 2020;65:102445.

38. Arab M, Bahramian B, Schindeler A, Valtchev P, Dehghani F, McConchie R. Extraction of phytochemicals from tomato leaf waste using subcritical carbon dioxide. Innov Food Sci Emerg Technol. oct 1, 2019;57:102204.

39. Bakić MT, Pedisić S, Zorić Z, Dragović-Uzelac V, Grassino AN. Effect of Microwave-Assisted Extraction on Polyphenols Recovery from Tomato Peel Waste. Acta Chim Slov. june 13, 2019;66(2):367-77.

40. Añibarro-Ortega M, Pinela J, Ćirić A, Martins V, Rocha F, Soković MD, et al. Valorisation of table tomato crop by-products: Phenolic profiles and in vitro antioxidant and antimicrobial activities. Food Bioprod Process. nov 1, 2020;124:307-19.

41. Solaberrieta I, Mellinas C, Jiménez A, Garrigós MC. Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods Basel Switz. oct 3, 2022;11(19):3068.

42. Selvaggi R, Valenti F, Pecorino B, Porto SMC. Assessment of Tomato Peels Suitable for Producing Biomethane within the Context of Circular Economy: A GIS-Based Model Analysis. Sustainability. January 2021;13(10):5559.

43. Mishra A, Kumar M, Bolan NS, Kapley A, Kumar R, Singh L. Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. Bioresour Technol. october 1, 2021;338:125514.

44. Scaglia B, D'Incecco P, Squillace P, Dell'Orto M, De Nisi P, Pellegrino L, et al. Development of a tomato pomace biorefinery based on a CO2-supercritical extraction process for the production of a high value lycopene product, bioenergy and digestate. J Clean Prod. january 10, 2020;243:118650.

45. Hijosa-Valsero M, Garita-Cambronero J, Paniagua-García AI, Díez-Antolínez R. Tomato Waste from Processing Industries as a Feedstock for Biofuel Production. BioEnergy Res. dec 1, 2019;12(4):1000-11.

46. Li Y, Xu F, Li Y, Lu J, Li S, Shah A, et al. Reactor performance and energy analysis of solid state anaerobic co-digestion of dairy manure with corn stover and tomato residues. Waste Manag. March 1, 2018;73:130-9.

47. Mahmoodi-Eshkaftaki M, Ghani A. An efficient process for improvement of biohydrogen and biomethane production from tomato waste: Inhibitory effects of ultrasonic pretreatment. Fuel. nov 15, 2022;328:125273.

48. Szilágyi Á, Bodor A, Tolvai N, Kovács KL, Bodai L, Wirth R, et al. A comparative analysis of biogas production from tomato bio-waste in mesophilic batch and continuous anaerobic digestion systems. PLOS ONE. mar 17, 2021;16(3):e0248654.

49. Azabou S, Louati I, Ben Taheur F, Nasri M, Mechichi T. Towards sustainable management of tomato pomace through the recovery of valuable compounds and sequential production of low-cost biosorbent. Environ Sci Pollut Res Int. November 2020;27(31):39402-12.

50. Kehili M, Sayadi S, Frikha F, Zammel A, Allouche N. Optimization of lycopene extraction from tomato peels industrial by-product using maceration in refined olive oil. Food Bioprod Process. september 1, 2019;117:321-8.

51. Solaberrieta I, Mellinas C, Jiménez A, Garrigós MC. Recovery of Antioxidants from Tomato Seed Industrial Wastes by Microwave-Assisted and Ultrasound-Assisted Extraction. Foods. January 2022;11(19):3068.

52. Girotto F, Lavagnolo MC, Acar G, Piazza L. Bio-methane production from tomato pomace: preliminary evaluation of process intensification through ultrasound pre-treatment. J Mater Cycles Waste Manag. January 1, 2021;23(1):416-22.