Impacto del consumo de aminoácidos de cadena ramificada (BCAA) en la Diabetes Mellitus Tipo 2


Resumen

Niveles circulantes elevados de aminoácidos de cadena ramificada (BCAA) han sido descritos como un fuerte factor predictor de la diabetes mellitus tipo 2 (DM2) por su implicación en la resistencia a la insulina (RI). El principal objetivo es evaluar si una dieta rica en estos aminoácidos supone un riesgo para el desarrollo de DM2. Material y métodos: Esta revisión bibliográfica se ha sustentado en artículos científicos seleccionados de diferentes bases de datos, entre las que destaca PubMed. Un total de 23 artículos fueron estudiados en profundidad.  Resultados y discusión: Una mayor ingesta de BCAA ha presentado una asociación positiva en el desarrollo de la DM2, principalmente si esta proviene de alimentos de origen animal. Asimismo, su restricción selectiva produce cierta mejora en la fisiopatología de la DM2 sin verse comprometida la ingesta de otros nutrientes esenciales. Por el contrario, no se ha observado que los protocolos de suplementación con BCAA presenten repercusiones negativas para la salud.  La ingesta de BCAA si parece estar asociada a un mayor riesgo de padecer DM2; pero esta asociación no puede estudiarse de forma aislada, sino que debe considerarse parte de una interacción compleja de componentes dietéticos, en la cual, la calidad nutricional de los alimentos adquiere un importante papel.


##plugins.themes.bootstrap3.article.details##

Cómo citar

Tejido Ruiz-Ogarrio, C. (2023). Impacto del consumo de aminoácidos de cadena ramificada (BCAA) en la Diabetes Mellitus Tipo 2. LS ealth and utrition esearch, 1(2). ecuperado a partir de https://www.mlsjournals.com/MLS-Health-Nutrition/article/view/1602


Descargas

La descarga de datos todavía no está disponible.

Citas

1. American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care. 16 de diciembre de 2021;45(Supplement_1):S17-38.

2. Diabetes [Internet]. [citado 22 de febrero de 2022]. Disponible en: https://www.who.int/es/news-room/fact-sheets/detail/diabetes

3. Diabetes tipo 2 [Internet]. [citado 22 de febrero de 2022]. Disponible en: https://www.idf.org/aboutdiabetes/type-2-diabetes.html

4. Tipos de diabetes [Internet]. Federación Española de Diabetes FEDE. [citado 22 de febrero de 2022]. Disponible en: https://fedesp.es/diabetes/tipos/

5. Petersmann A, Müller-Wieland D, Müller UA, Landgraf R, Nauck M, Freckmann G, et al. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. diciembre de 2019;127(S 01):S1-7.

6. American Diabetes Association Professional Practice Committee, Draznin B, Aroda VR, Bakris G, Benson G, Brown FM, et al. 6. Glycemic Targets: Standards of Medical Care in Diabetes-2022. Diabetes Care. 1 de enero de 2022;45(Suppl 1):S83-96.

7. Magliano DJ, Islam RM, Barr ELM, Gregg EW, Pavkov ME, Harding JL, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ. 11 de septiembre de 2019;366:l5003.

8. American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care. 4 de diciembre de 2020;44(Supplement_1):S15-33.

9. Ahola-Olli AV, Mustelin L, Kalimeri M, Kettunen J, Jokelainen J, Auvinen J, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts. Diabetologia. 2019;62(12):2298-309.

10. Wittenbecher C, Guasch-Ferré M, Haslam DE, Dennis C, Li J, Bhupathiraju SN, et al. Changes in metabolomics profiles over ten years and subsequent risk of developing type 2 diabetes: Results from the Nurses’ Health Study. EBioMedicine. 31 de diciembre de 2021;75:103799.

11. Long J, Yang Z, Wang L, Han Y, Peng C, Yan C, et al. Metabolite biomarkers of type 2 diabetes mellitus and pre-diabetes: a systematic review and meta-analysis. BMC Endocr Disord. 23 de noviembre de 2020;20:174.

12. Neinast M, Murashige D, Arany Z. Branched Chain Amino Acids. Annu Rev Physiol. 10 de febrero de 2019;81:139-64.

13. Vieira EES, Pereira IC, Braz AF, Nascimento-Ferreira MV, de Oliveira Torres LR, de Freitas Brito A, et al. Food consumption of branched chain amino acids and insulin resistance: A systematic review of observational studies in humans. Clin Nutr ESPEN. diciembre de 2020;40:277-81.

14. Asghari G, Farhadnejad H, Teymoori F, Mirmiran P, Tohidi M, Azizi F. High dietary intake of branched-chain amino acids is associated with an increased risk of insulin resistance in adults. J Diabetes. mayo de 2018;10(5):357-64.

15. Okekunle AP, Wu X, Duan W, Feng R, Li Y, Sun C. Dietary Intakes of Branched-Chained Amino Acid and Risk for Type 2 Diabetes in Adults: The Harbin Cohort Study on Diet, Nutrition and Chronic Non-Communicable Diseases Study. Can J Diabetes. octubre de 2018;42(5):484-492.e7.

16. American Diabetes Association. 5. Lifestyle Management: Standards of Medical Care in Diabetes—2019. Diabetes Care. 7 de diciembre de 2018;42(Supplement_1):S46-60.

17. Davies MJ, Aroda VR, Collins BS, Gabbay RA, Green J, Maruthur NM, et al. Management of hyperglycaemia in type 2 diabetes, 2022. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 24 de septiembre de 2022;

18. Papamichou D, Panagiotakos DB, Itsiopoulos C. Dietary patterns and management of type 2 diabetes: A systematic review of randomised clinical trials. Nutr Metab Cardiovasc Dis NMCD. junio de 2019;29(6):531-43.

19. Schwingshackl L, Chaimani A, Hoffmann G, Schwedhelm C, Boeing H. A network meta-analysis on the comparative efficacy of different dietary approaches on glycaemic control in patients with type 2 diabetes mellitus. Eur J Epidemiol. 2018;33(2):157-70.

20. Lewgood J, Oliveira B, Korzepa M, Forbes SC, Little JP, Breen L, et al. Efficacy of Dietary and Supplementation Interventions for Individuals with Type 2 Diabetes. Nutrients. 12 de julio de 2021;13(7):2378.

21. Zhao WT, Luo Y, Zhang Y, Zhou Y, Zhao TT. High protein diet is of benefit for patients with type 2 diabetes: An updated meta-analysis. Medicine (Baltimore). noviembre de 2018;97(46):e13149.

22. Malaeb S, Bakker C, Chow LS, Bantle AE. High-Protein Diets for Treatment of Type 2 Diabetes Mellitus: A Systematic Review. Adv Nutr Bethesda Md. 1 de julio de 2019;10(4):621-33.

23. Yu Z, Nan F, Wang LY, Jiang H, Chen W, Jiang Y. Effects of high-protein diet on glycemic control, insulin resistance and blood pressure in type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr Edinb Scotl. junio de 2020;39(6):1724-34.

24. Ye J, Yu Q, Mai W, Liang P, Liu X, Wang Y. Dietary protein intake and subsequent risk of type 2 diabetes: a dose-response meta-analysis of prospective cohort studies. Acta Diabetol. agosto de 2019;56(8):851-70.

25. Tian S, Xu Q, Jiang R, Han T, Sun C, Na L. Dietary Protein Consumption and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients. 6 de septiembre de 2017;9(9):982.

26. Rousseau M, Guénard F, Garneau V, Allam-Ndoul B, Lemieux S, Pérusse L, et al. Associations Between Dietary Protein Sources, Plasma BCAA and Short-Chain Acylcarnitine Levels in Adults. Nutrients. 15 de enero de 2019;11(1):E173.

27. Dimou A, Tsimihodimos V, Bairaktari E. The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology. Int J Mol Sci. 5 de abril de 2022;23(7):4022.

28. Holeček M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab. 2018;15:33.

29. Rifai N. Tietz Textbook of Laboratory Medicine. 7.a ed. ElServier; 2022.

30. Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci. 23 de marzo de 2018;19(4):954.

31. Siddik MAB, Shin AC. Recent Progress on Branched-Chain Amino Acids in Obesity, Diabetes, and Beyond. Endocrinol Metab. septiembre de 2019;34(3):234-46.

32. Holeček M. Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes? Nutrients. octubre de 2020;12(10):3087.

33. Arany Z, Neinast M. Branched Chain Amino Acids in Metabolic Disease. Curr Diab Rep. 15 de agosto de 2018;18(10):76.

34. Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr. 20 de septiembre de 2021;1-39.

35. Felig P, Marliss E, Cahill GF. Plasma amino acid levels and insulin secretion in obesity. N Engl J Med. 9 de octubre de 1969;281(15):811-6.

36. Adibi SA. Influence of dietary deprivations on plasma concentration of free amino acids of man. J Appl Physiol. julio de 1968;25(1):52-7.

37. Lee SH, Park SY, Choi CS. Insulin Resistance: From Mechanisms to Therapeutic Strategies. Diabetes Metab J. enero de 2022;46(1):15-37.

38. Thomas DD, Corkey BE, Istfan NW, Apovian CM. Hyperinsulinemia: An Early Indicator of Metabolic Dysfunction. J Endocr Soc. 1 de septiembre de 2019;3(9):1727-47.

39. Adeva-Andany MM, González-Lucán M, Fernández-Fernández C, Carneiro-Freire N, Seco-Filgueira M, Pedre-Piñeiro AM. Effect of diet composition on insulin sensitivity in humans. Clin Nutr ESPEN. octubre de 2019;33:29-38.

40. Teymoori F, Farhadnejad H, Moslehi N, Mirmiran P, Mokhtari E, Azizi F. The association of dietary insulin and glycemic indices with the risk of type 2 diabetes. Clin Nutr Edinb Scotl. abril de 2021;40(4):2138-44.

41. Rivera ME, Rivera CN, Vaughan RA. Branched-chain amino acids at supraphysiological but not physiological levels reduce myotube insulin sensitivity. Diabetes Metab Res Rev. febrero de 2022;38(2):e3490.

42. White PJ, McGarrah RW, Herman MA, Bain JR, Shah SH, Newgard CB. Insulin action, type 2 diabetes, and branched-chain amino acids: A two-way street. Mol Metab. 24 de mayo de 2021;52:101261.

43. Yoon MS. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients. julio de 2016;8(7):405.

44. Hu W, Yang P, Fu Z, Wang Y, Zhou Y, Ye Z, et al. High L-Valine Concentrations Associate with Increased Oxidative Stress and Newly-Diagnosed Type 2 Diabetes Mellitus: A Cross-Sectional Study. Diabetes Metab Syndr Obes Targets Ther. 2022;15:499-509.

45. Zhou Z, Sun B, Yu D, Zhu C. Gut Microbiota: An Important Player in Type 2 Diabetes Mellitus. Front Cell Infect Microbiol. 15 de febrero de 2022;12:834485.

46. Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol. 2021;12:632335.

47. Du L, Li Q, Yi H, Kuang T, Tang Y, Fan G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus. Biomed Pharmacother Biomedecine Pharmacother. mayo de 2022;149:112839.

48. Massey W, Brown JM. The Gut Microbial Endocrine Organ in Type 2 Diabetes. Endocrinology. 1 de febrero de 2021;162(2):bqaa235.

49. Gojda J, Cahova M. Gut Microbiota as the Link between Elevated BCAA Serum Levels and Insulin Resistance. Biomolecules. 28 de septiembre de 2021;11(10):1414.

50. Kurpad AV, Regan MM, Raj T, Gnanou JV. Branched-chain amino acid requirements in healthy adult human subjects. J Nutr. enero de 2006;136(1 Suppl):256S-63S.

51. Fontana L, Cummings NE, Arriola Apelo SI, Neuman JC, Kasza I, Schmidt BA, et al. Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health. Cell Rep. 12 de julio de 2016;16(2):520-30.

52. Merz B, Frommherz L, Rist MJ, Kulling SE, Bub A, Watzl B. Dietary Pattern and Plasma BCAA-Variations in Healthy Men and Women—Results from the KarMeN Study. Nutrients. mayo de 2018;10(5):623.

53. Wang W, Jiang H, Zhang Z, Duan W, Han T, Sun C. Interaction between dietary branched-chain amino acids and genetic risk score on the risk of type 2 diabetes in Chinese. Genes Nutr. 4 de marzo de 2021;16(1):4.

54. Tobias DK, Clish C, Mora S, Li J, Liang L, Hu FB, et al. Dietary Intakes and Circulating Concentrations of Branched-Chain Amino Acids in Relation to Incident Type 2 Diabetes Risk Among High-Risk Women with a History of Gestational Diabetes Mellitus. Clin Chem. agosto de 2018;64(8):1203-10.

55. Hamaya R, Mora S, Lawler PR, Cook NR, Buring JE, Lee IM, et al. Association of modifiable lifestyle factors with plasma branched chain amino acid metabolites in women. J Nutr. 8 de marzo de 2022;nxac056.

56. Elshorbagy A, Jernerén F, Basta M, Basta C, Turner C, Khaled M, et al. Amino acid changes during transition to a vegan diet supplemented with fish in healthy humans. Eur J Nutr. agosto de 2017;56(5):1953-62.

57. Isanejad M, LaCroix A, Thomson CA, Tinker L, Larson JC, Qi Q, et al. Branched Chain Amino Acid, Meat Intake and Risk of Type 2 Diabetes in the Women’s Health Initiative. Br J Nutr. junio de 2017;117(11):1523-30.

58. de la O V, Zazpe I, Ruiz-Canela M. Effect of branched-chain amino acid supplementation, dietary intake and circulating levels in cardiometabolic diseases: an updated review. Curr Opin Clin Nutr Metab Care. enero de 2020;23(1):35-50.

59. Zheng Y, Li Y, Qi Q, Hruby A, Manson JE, Willett WC, et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol. octubre de 2016;45(5):1482-92.

60. Okekunle AP, Zhang M, Wang Z, Onwuka JU, Wu X, Feng R, et al. Dietary branched-chain amino acids intake exhibited a different relationship with type 2 diabetes and obesity risk: a meta-analysis. Acta Diabetol. febrero de 2019;56(2):187-95.

61. Woo SL, Yang J, Hsu M, Yang A, Zhang L, Lee RP, et al. Effects of branched-chain amino acids on glucose metabolism in obese, prediabetic men and women: a randomized, crossover study. Am J Clin Nutr. 1 de junio de 2019;109(6):1569-77.

62. Jacob KJ, Chevalier S, Lamarche M, Morais JA. Leucine Supplementation Does Not Alter Insulin Sensitivity in Prefrail and Frail Older Women following a Resistance Training Protocol. J Nutr. 1 de junio de 2019;149(6):959-67.

63. Ooi DSQ, Ling JQR, Sadananthan SA, Velan SS, Ong FY, Khoo CM, et al. Branched-Chain Amino Acid Supplementation Does Not Preserve Lean Mass or Affect Metabolic Profile in Adults with Overweight or Obesity in a Randomized Controlled Weight Loss Intervention. J Nutr. 8 de abril de 2021;151(4):911-20.

64. Karusheva Y, Koessler T, Strassburger K, Markgraf D, Mastrototaro L, Jelenik T, et al. Short-term dietary reduction of branched-chain amino acids reduces meal-induced insulin secretion and modifies microbiome composition in type 2 diabetes: a randomized controlled crossover trial. Am J Clin Nutr. noviembre de 2019;110(5):1098-107.

65. Zheng Y, Ceglarek U, Huang T, Li L, Rood J, Ryan DH, et al. Weight-loss diets and 2-y changes in circulating amino acids in 2 randomized intervention trials. Am J Clin Nutr. febrero de 2016;103(2):505-11.

66. Lamiquiz-Moneo I, Bea AM, Palacios-Pérez C, Miguel-Etayo PD, González-Gil EM, López-Ariño C, et al. Effect of Lifestyle Intervention in the Concentration of Adipoquines and Branched Chain Amino Acids in Subjects with High Risk of Developing Type 2 Diabetes: Feel4Diabetes Study. Cells. 12 de marzo de 2020;9(3):E693.

67. Ruiz-Canela M, Guasch-Ferré M, Toledo E, Clish CB, Razquin C, Liang L, et al. Plasma branched chain/aromatic amino acids, enriched Mediterranean diet and risk of type 2 diabetes: case-cohort study within the PREDIMED Trial. Diabetologia. julio de 2018;61(7):1560-71.

68. Prodhan UK, Milan AM, Thorstensen EB, Barnett MPG, Stewart RAH, Benatar JR, et al. Altered Dairy Protein Intake Does Not Alter Circulatory Branched Chain Amino Acids in Healthy Adults: A Randomized Controlled Trial. Nutrients. 15 de octubre de 2018;10(10):E1510.

69. Ramzan I, Taylor M, Phillips B, Wilkinson D, Smith K, Hession K, et al. A Novel Dietary Intervention Reduces Circulatory Branched-Chain Amino Acids by 50%: A Pilot Study of Relevance for Obesity and Diabetes. Nutrients. 30 de diciembre de 2020;13(1):95.

70. Elshorbagy AK, Samocha-Bonet D, Jernerén F, Turner C, Refsum H, Heilbronn LK. Food Overconsumption in Healthy Adults Triggers Early and Sustained Increases in Serum Branched-Chain Amino Acids and Changes in Cysteine Linked to Fat Gain. J Nutr. 1 de julio de 2018;148(7):1073-80.

71. Xiao F, Guo F. Impacts of essential amino acids on energy balance. Mol Metab. marzo de 2022;57:101393.

72. Teymoori F, Asghari G, Mirmiran P, Azizi F. Dietary amino acids and incidence of hypertension: A principle component analysis approach. Sci Rep. 4 de diciembre de 2017;7(1):16838.

73. Mirmiran P, Teymoori F, Asghari G, Azizi F. Dietary Intakes of Branched Chain Amino Acids and the Incidence of Hypertension: A Population-Based Prospective Cohort Study. Arch Iran Med. 1 de abril de 2019;22(4):182-8.