“Dance Dance” Educación. ¿Una verdadera “revolución” para el aula?


Resumen

Introducción: La sociedad actual se encuentra en constante evolución en búsqueda de nuevas metodologías educativas que permitan una mejor formación integral del alumnado. Estas deben ser atractivas y motivadoras a la vez que permitan la mejora de las variables cognitivas del alumnado. Por ello, el objetivo de esta presente revisión fue analizar el efecto del Videojuego Activo o Exergame (EX) Dance Dance Revolution (DDR) sobre el rendimiento cognitivo y académico en niños y adolescentes. Método: Se realizó una búsqueda bibliográfica de la literatura en cuatro bases de datos (Pubmed, Web of Science, Scopus y ProQuest, n = 265). La búsqueda se realizó en los diez últimos años (enero 2007/septiembre 2017). Resultados: Un total de 3 estudios de intervención fueron incluidos en la revisión con una participación de 273 niños y adolescentes. Los resultados muestran que tras la práctica de DDR, el alumnado mejoró su actividad cognitiva. Además obtuvieron otros beneficios a nivel fisiológico derivados de su práctica.  Discusión: Estos resultados reflejan que la promoción de programas mediante EX podría tener un gran potencial para el desarrollo cognitivo y académico en esta etapa educativa. Además, permitirían el desarrollo de hábitos saludables de actividad física, el aumento de la motivación del alumnado y una mejor socialización.


##plugins.themes.bootstrap3.article.details##

Cómo citar

López-Serrano, S., Ruiz-Ariza, A., Suárez-Manzano, S., & de la Torre Cruz, M. (2017). “Dance Dance” Educación. ¿Una verdadera “revolución” para el aula?. LS ducational esearch (MLSER), 1(1). https://doi.org/10.29314/mlser.v1i1.22


Descargas

La descarga de datos todavía no está disponible.

Estadísticas


Citas

Åberg, M. A., Pedersen, N. L., Torén, K., Svartengren, M., Bäckstrand, B., Johnsson, T., &
Kuhn, H. G. (2009). Cardiovascular fitness is associated with cognition in young
adulthood. Proceedings of the National Academy of Sciences, 106(49), 20906-20911.

Adkins, D. L., Boychuk, J., Remple, M. S., & Kleim, J. A. (2006). Motor training induces
experience-specific patterns of plasticity across motor cortex and spinal cord. Journal
of applied physiology, 101(6), 1776-1782.

Anderson-Hanley, C., Tureck, K., & Schneiderman, R. L. (2011). Autism and exergaming:
effects on repetitive behaviors and cognition. Psychology research and behavior
management, 4, 129.

Anderson, N., Steele, J., O'Neill, L. A., & Harden, L. A. (2016). Pokemon go: Mobile app
user guides. British Journal of Sports Medicine. doi: 10.1136/bjsports-2016-096762

Ardoy, D. N., Fernández-Rodríguez, J. M., Jiménez-Pavón, D., Castillo, R., Ruiz, J. R., &
Ortega, F. B. (2014). A physical education trial improves adolescents’ cognitive
performance and academic achievement: the EDUFIT study. Scandinavian Journal of
Medicine & Science in Sports, 24(1), e52-61. doi: 10.1111/sms.12093

Azevedo, L. B., Watson, D. B., Haighton, C., & Adams, J. (2014). The effect of dance mat
exergaming systems on physical activity and health–related outcomes in secondary
schools: results from a natural experiment. BMC public health, 14(1), 951. doi:
10.1186/1471-2458-14-951

Baranowski, T. (2017). Exergaming: Hope for future physical activity? Or blight on
mankind? Journal of Sport and Health Science, 6(1), 44-46. doi:
10.1016/j.jshs.2016.11.006

Barnett, A., Cerin, E., & Baranowski, T. (2011). Active video games for youth: a systematic
review. Journal of Physical Activity and Health, 8(5), 724-737. doi:
10.1123/jpah.8.5.724

Baskin, M. L., Thind, H., Affuso, O., Gary, L. C., LaGory, M., & Hwang, S. S. (2013).
Predictors of moderate-to-vigorous physical activity (MVPA) in African American
young adolescents. Annals of Behavioral Medicine, 45(1), 142-150. doi:
10.1007/s12160-012-9437-7

Best, J. R. (2012). Exergaming immediately enhances children's executive function.
Developmental Psychology, 48(5), 1501e1510. doi: 10.1037/a0026648

Cadenas-Sanchez, C., Vanhelst, J., Ruiz, J. R., Castillo-Gualda, R., Libuda, L., Labayen, I.,
Ortega, F. B. (2016). Fitness and fatness in relation with attention capacity in
European adolescents: The HELENA study. Journal of Science and Medicine in Sport.
doi: 10.1016/j.jsams.2016.08.003

Cassilhas, R. C., Viana, V. A., Grassmann, V., Santos, R. T., Santos, R. F., Tufik, S. E. R. G.
I. O., & Mello, M. T. (2007). The impact of resistance exercise on the cognitive
function of the elderly. Medicine and science in sports and exercise, 39(8), 1401. doi:
10.1249/mss.0b013e318060111f

Castelli, D. M., Hillman, C. H., Buck, S. M., & Erwin, H. E. (2007). Physical fitness and
academic achievement in third-and fifth-grade students. Journal of Sport and Exercise
Psychology, 29(2), 239-252. doi: 10.1123/jsep.29.2.239

Chaddock-Heyman, L., Erickson, K. I., Holtrop, J. L., Voss, M. W., Pontifex, M. B., Raine,
L. B., & Kramer, A. F. (2014). Aerobic fitness is associated with greater white matter
integrity in children. Frontiers in human neuroscience, 8, 584. doi:
10.3389/fnhum.2014.00584

Chaddock L, Hillman CH, Pontifex MB, Johnson CR, Raine LB, Kramer AF. (2012)
Childhood aerobic fitness predicts cognitive performance one year later. Journal of
Sports Sciences, 2012; 30:421-430. doi: 10.1080/02640414.2011.647706

Chao, Y. Y., Scherer, Y. K., & Montgomery, C. A. (2015). Effects of using Nintendo Wii™
exergames in older adults: a review of the literature. Journal of aging and
health, 27(3), 379-402. doi: 10.1177/0898264314551171

Coe, D. P., Peterson, T., Blair, C., Schutten, M. C., & Peddie, H. (2013). Physical fitness,
academic achievement, and socioeconomic status in school‐aged youth. Journal of
School Health, 83(7), 500-507. doi: 10.1111/josh.12058

Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–68. doi:
10.1146/annurev-psych-113011-143750

Esteban-Cornejo, I., Tejero-Gonzalez, C. M., Sallis, J. F., & Veiga, O. L. (2015). Physical
activity and cognition in adolescents: A systematic review. Journal of Science and
Medicine in Sport / Sports Medicine Australia, 18(5), 534–9. doi:
10.1016/j.jsams.2014.07.007

Esteban-Cornejo, I., Tejero-González, C. M., Martinez-Gomez, D., Del-Campo, J., GonzálezGalo,
A., Padilla-Moledo, C., & UP & DOWN study group. (2014). Independent and
combined influence of the components of physical fitness on academic performance in
youth. The journal of pediatrics, 165(2), 306-312.

Fung, V., Ho, A., Shaffer, J., Chung, E., & Gomez, M. (2012). Use of Nintendo Wii Fit™ in
the rehabilitation of outpatients following total knee replacement: a preliminary
randomised controlled trial. Physiotherapy, 98(3), 183-188.

Gao, Z., Hannan, P., Xiang, P., Stodden, D. F., & Valdez, V. E. (2013). Video game–based
exercise, Latino Children's physical health, and academic achievement. American
journal of preventive medicine, 44(3), S240-S246.

Gao, Z., Zhang, T., & Stodden, D. (2013). Children's physical activity levels and
psychological correlates in interactive dance versus aerobic dance. Journal of Sport
and Health Science, 2(3), 146-151.

Gao, Z., Chen, S., Pasco, D., & Pope, Z. (2015). A meta‐analysis of active video games on
health outcomes among children and adolescents. Obesity reviews, 16(9), 783-794.

Gutiérrez, M., & López, E. (2012). Motivación, comportamiento de los alumnos y
rendimiento académico. Infancia y aprendizaje, 35(1), 61-72.

Haapala, E., Poikkeus, A., Kukkonen-Harjula, K., Tompuri, T., Lintu, N., Väistö, J. Lakka, T.
(2014). Associations of Physical Activity and Sedentary Behavior with Academic
Skills – A Follow-Up Study among Primary School Children. PLOS ONE, 9(9) doi:
10.1371/journal.pone.0107031

Haapala, E. A. (2013). Cardiorespiratory fitness and motor skills in relation to cognition and
academic performance in children–a review. Journal of human kinetics, 36(1), 55-68.

Hillman, C. H., Buck, S. M., Themanson, J. R., Pontifex, M. B., & Castelli, D. M. (2009).
Aerobic fitness and cognitive development: Event-related brain potential and task
performance indices of executive control in preadolescent children. Developmental
psychology, 45(1), 114.

Hogan, C. L., Catalino, L. I., Mata, J., & Fredrickson, B. L. (2015). Beyond emotional
benefits: Physical activity and sedentary behaviour affect psychosocial resources
through emotions. Psychology & Health, 30(3), 354–369. doi:
10.1080/08870446.2014.973410

Hsu, T.-C. (2017). Learning english with augmented Reality: Do learning styles matter?
Computers & Education, 106, 137e149. doi: 10.1016/j. compedu.2016.12.007

Joronen, K., Aikasalo, A., & Suvitie, A. (2016). Nonphysical effects of exergames on child
and adolescent well-being: a comprehensive systematic review. Scandinavian Journal
of Caring Sciences. doi: 10.1111/scs.12393

LeBlanc, A. G., & Chaput, J. P. (2016). Pokémon Go: A game changer for the physical
inactivity crisis? Preventive Medicine. doi: 10.1016/j.ypmed.2016.11.012

Lieberman, D. A. (2006). What can we learn from playing interactive games. Playing video
games: Motives, responses, and consequences, 379-397.

Martínez-Gómez, D., Ruiz, J. R., Gómez-Martínez, S., Chillón, P., Rey-López, J. P., Díaz, L.
E., & Marcos, A. (2011). Active commuting to school and cognitive performance in
adolescents: the AVENA study. Archives of pediatrics & adolescent medicine, 165(4),
300-305.

Niebla J, Hernández-Guzmán L. (2007). Variables que inciden en el rendimiento académico
de adolescentes mexicanos. Revista Latinoamericana de Psicología, 39 (3):487-501.

Nigg, C. R., Mateo, D. J., & An, J. (2016). Pokémon GO May Increase Physical Activity and
Decrease Sedentary Behaviors. American Journal of Public Health, e1–e2. doi:
10.2105/AJPH.2016.303532

Norris, E., Hamer, M., & Stamatakis, E. (2016). Active Video Games in Schools and Effects
on Physical Activity and Health: A Systematic Review. The Journal of Pediatrics. doi:
10.1016/j.jpeds.2016.02.001

Nurkkala, V. M., Kalermo, J., & Jarvilehto, T. (2014). Development of exergaming simulator
for gym training, exercise testing and rehabilitation. Journal of Communication and
Computer, 11, 403-411.

Ortega, F. B., Ruiz, J. R., Castillo, M. J., & Sjöström, M. (2008). Physical fitness in childhood
and adolescence: a powerful marker of health. International journal of obesity, 32(1),
1-11.

Roemmich, J. N., Lambiase, M. J., McCarthy, T. F., Feda, D. M., & Kozlowski, K. F. (2012).
Autonomy supportive environments and mastery as basic factors to motivate physical
activity in children: a controlled laboratory study. International Journal of Behavioral
Nutrition and Physical Activity, 9(1), 16.

Ruiz-Ariza, A., Grao-Cruces, A., Loureiro, N. E. M., & Martínez-López, E. J. (2017a).
Influence of physical fitness on cognitive and academic performance in adolescents: A
systematic review from 2005–2015. International Review of Sport and Exercise
Psychology, 10(1), 108–133. doi: 10.1080/1750984X.2016.1184699

Ruiz-Ariza, A., de la Torre-Cruz, M. J., Suárez-Manzano, S., & Martínez-López, E. J. (2016).
Active commuting to school influences on academic performance of Spanish
adolescent girls. Retos, 32, 39–43.

Ruiz-Ariza, A., Ruiz, J., De la Torre-Cruz, M., Latorre-Román, P., & Martínez-López, E. J.
(2016). Influence of level of attraction to physical activity on academic performance
of adolescents. Revista Latinoamericana de Psicología, 48(1), 42–50. doi:
10.1016/j.rlp.2015.09.005

Ruiz-Ariza, A., Casuso, R. A., Suarez-Manzano, S., & Martínez-López, E. J. (2018). Effect of
augmented reality game Pokémon GO on cognitive performance and emotionalintelligence in adolescent young. Computers & Education. 116, 49-63 doi: 10.1016/j.compedu.2017.09.002
Ruiz, J. R., Ortega, F. B., Castillo, R., Martín-Matillas, M., Kwak, L., Vicente-Rodríguez, G.,
& Moreno, L. A. (2010). Physical activity, fitness, weight status, and cognitive
performance in adolescents. The Journal of Pediatrics, 157(6), 917-922–5. doi:
10.1016/j.jpeds.2010.06.026

Sergeant, J. A. (2005). Modeling attention-deficit/hyperactivity disorder: a critical appraisal
of the cognitive-energetic model. Biological psychiatry, 57(11), 1248-1255.

Serino, M., Cordrey, K., McLaughlin, L., & Milanaik, R. L. (2016). Pokemon go and
augmented virtual reality games: A cautionary commentary for parents and
pediatricians. Current Opinion in Pediatrics, 28(5), 673e677. doi:
10.1097/MOP.0000000000000409

Sommerauer, P., & Müller, O. (2014). Augmented reality in informal learning environments:
A field experiment in a mathematics exhibition. Computers & Education, 79, 59e68.
doi: 10.1016/j.compedu.2014.07.013

Smits-Engelsman, B. C., Jelsma, L. D., & Ferguson, G. D. (2016). The effect of exergames on
functional strength, anaerobic fitness, balance and agility in children with and without
motor coordination difficulties living in low-income communities. Human movement
science, 55, 327-337. doi: 10.1016/j.humov.2016.07.006

Staiano, A. E., & Calvert, S. L. (2011). Exergames for Physical Education Courses: Physical,
Social, and Cognitive Benefits. Child Development Perspectives, 5(2), 93–98. doi:
10.1111/j.1750-8606.2011.00162.x

Stanmore, E., Stubbs, B., Vancampfort, D., de Bruin, E. D., & Firth, J. (2017). The effect of
active video games on cognitive functioning in clinical and non-clinical populations: a
meta-analysis of randomized controlled trials. Neuroscience & Biobehavioral Reviews,
78, 34-43. doi: 10.1016/j.neubiorev.2017.04.011

Stodden, D. F., Goodway, J. D., Langendorfer, S. J., Roberton, M. A., Rudisill, M. E., Garcia,
C., & Garcia, L. E. (2008). A developmental perspective on the role of motor skill
competence in physical activity: An emergent relationship. Quest, 60(2), 290-306.

Wrann CD, White JP, Salogiannnis J, et al. (2013). Exercise induces hippocampal BDNF through a
PGC-1α/FNDC5 pathway. Cell Metabolism;18(5),649-659. doi:
10.1016/j.cmet.2013.09.008

Zeng, N., Pope, Z., Lee, J. E., & Gao, Z. (2016). A systematic review of active video games
on rehabilitative outcomes among older patients. Journal of Sport and Health Science,
6(1), 33-43. doi: 10.1016/j.jshs.2016.12.002